Operating System Concepts

Lesson 21, 22
Objectives
e Memory Protection
e Page Table Structure
e Segmentation
e Segmentation Architecture
e Segmentation with Paging
Memory Protection
There must be some check if some invalid reference is invoked in page table.
e Memory protection implemented by associating protection bit with each frame.
e Valid-invalid bit attached to each entry in the page table:
o “Valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page.

o “Invalid” indicates that the page is not in the process’ logical address

space.
0
1
2| page0O
00000 frame number ; valid—invalid bit
page 0 ./ 3| page
o] 21|v
page 1 1=Ty 4| page?2
page 2 21 4| v 5
31 7]|v
page 3 41 8 v 6
5/9|v
page 4 6lofi TIR#sge
710 i
10,468 page 5 8| page4
12,287 page table
9| page5
page n

Operating System Concepts

Page Table Structure
There are three possible architectures of page table.
e Hierarchical Paging
e Hashed Page table
e Inverted Page table
Hierarchical Paging
e Break up the logical address space into multiple page tables.
e A simple technique is a two-level page table.
Two level paging example
e A logical address (on 32-bit machine with 4K page size) is divided into:
o A page number consisting of 20 bits.
o A page offset consisting of 12 bits.
e Since the page table is paged, the page number is further divided into:
o A 10-bit page number.
o A 10-bit page offset.

e Thus, a logical address is as follows

page number page offset
P 2 d
i0 10 12

Where Pi is an index into the outer page table, and p2 is the displacement within the page

of the outer page table.

o
—"‘_"_,-T
Pyl | ——
AT o
500 K|
~w V] e
08 b | -
708
ouler-page T g29 900 5
table . \
900 />< :
page of 929
page table

page table
memory

Operating System Concepts

Address-translation scheme for a two-level 32-bit paging architecture.

logical address

[o] d |

Py

A K \

Pz

Sy

outer-page d
table
page of
page table

Hashed Page Table

physical
logical address address
[p [d] | r [d |

Common in address spaces > 32 bits.

The virtual page number is hashed into a page table. This page table contains a
chain of elements hashing to the same location.

Virtual page numbers are compared in this chain searching for a match. If a match
is found, the corresponding physical frame is extracted.

physical
— |a]s| ||I|P|r|i_|T"‘ memory

hash table

Inverted Page Tables

One entry for each real page of memory.

Entry consists of the virtual address of the page stored in that real memory
location; with information about the process that owns that page.

Decreases memory needed to store each page table, but increases time needed to
search the table when a page reference occurs.

Use hash table to limit the search to one — or at most a few — page-table entries.

Operating System Concepts

CPU

Segmentation

logical
address | v
—» pid | p d i d

P |

search

pd]| p

page table

physical
address

physical
memory

e Memory-management scheme that supports user view of memory.

e A program is a collection of segments. A segment is a logical unit such as:

o

o

o

main program,

procedure,

function,

method,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays

Operating System Concepts

subroutine

symbol
table

main
program

logical address space

1
4
”
> |
II
|
3 IIl 2
4
/
3
user space physical memory space

Operating System Concepts

Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>,
Segment table — maps two-dimensional physical addresses; each table entry has:
o Base — contains the starting physical address where the segments reside in
memory.
o Limit — specifies the length of the segment.
Segment-table base register (STBR) points to the segment table’s location in
memory.
Segment-table length register (STLR) indicates number of segments used by a
program; segment number s is legal if s < STLR.
Protection. With each entry in segment table associate:
o validation bit =0 _ illegal segment
o read/write/execute privileges
Protection bits associated with segments; code sharing occurs at segment level.
Since segments vary in length, memory allocation is a dynamic storage-allocation
problem.

A segmentation example is shown in the following diagram

— limit | base |—
segment
table
CPU | s | d |

trap; addressing error physical memory

Operating System Concepts

P i e
7 ™
.
/ N
/ subroutine stack \
/ \ 1400
2400
symbol
segment 0 table
limit | base
Saqrt segment 4 0| 1000 | 1400
1| 400 [6300 3200
main 2| 400 | 4300
" program /3] 1100 | 3200 PR
'\ 4| 1000 | 4700
\ e segment table 4300
Qegmenﬂ segment 2 // segment 2
e 4700
“-_____'_'_'_'_'_/
logical address space segment 4
5700
6300
segment 1
6700

physical memory
Segmentation with Paging

e The MULTICS system solved problems of external fragmentation and lengthy
search times by paging the segments.

e Solution differs from pure segmentation in that the segment-table entry contains
not the base address of the segment, but rather the base address of a page table for
this segment.

e As shown in the following diagram, the Intel 386 uses segmentation with paging

for memory management with a two-level paging scheme.

Operating System Concepts

logical address

|— segment | page-table

0 length base

segment table
STBR
memory
y
f =l 1 | d }—>
physical
address
page table for
segment s
logical address selector offset
descriptor table
segment descriptor —><+’>4_
h 4
linear address ‘ directory ‘ page ‘ offset ‘ page frame
»| physical address
page directory page table 2
= directory entry = page table enlry
r 3 A
page directory

base register

